Minimal Complex Surfaces with Levi–Civita Ricci-flat Metrics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Ricci - flat metrics on K 3

We develop numerical algorithms for solving the Einstein equation on Calabi-Yau manifolds at arbitrary values of their complex structure and Kähler parameters. We show that Kähler geometry can be exploited for significant gains in computational efficiency. As a proof of principle, we apply our methods to a one-parameter family of K3 surfaces constructed as blow-ups of the T /Z2 orbifold with ma...

متن کامل

Ricci curvature, minimal surfaces and sphere theorems

Using an analogue of Myers’ theorem for minimal surfaces and three dimensional topology, we prove the diameter sphere theorem for Ricci curvature in dimension three and a corresponding eigenvalue pinching theorem. This settles these two problems for closed manifolds with positive Ricci curvature since they are both false in dimensions greater than three. §

متن کامل

Sigma Models, Minimal Surfaces and Some Ricci Flat Pseudo Riemannian Geometries

We consider the sigma models where the base metric is proportional to the metric of the configuration space. We show that the corresponding sigma model equation admits a Lax pair. We also show that this type of sigma models in two dimensions are intimately related to the minimal surfaces in a flat pseudo Riemannian 3-space. We define two dimensional surfaces conformally related to the minimal s...

متن کامل

ADIABATIC LIMITS OF RICCI - FLAT KÄHLER METRICS 3 from

We study adiabatic limits of Ricci-flat Kähler metrics on a Calabi-Yau manifold which is the total space of a holomorphic fibration when the volume of the fibers goes to zero. By establishing some new a priori estimates for the relevant complex Monge-Ampère equation, we show that the Ricci-flat metrics collapse (away from the singular fibers) to a metric on the base of the fibration. This metri...

متن کامل

Ricci-flat K Ahler Metrics on Canonical Bundles

We prove the existence of a (unique) S-invariant Ricci-flat Kähler metric on a neighbourhood of the zero section in the canonical bundle of a realanalytic Kähler manifold X, extending the metric on X. In the important paper [3], Calabi proved existence of Ricci-flat Kähler metrics on two classes of manifolds: a) cotangent bundles of projective spaces; b) canonical bundles of Kähler-Einstein man...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Acta Mathematica Sinica, English Series

سال: 2018

ISSN: 1439-8516,1439-7617

DOI: 10.1007/s10114-018-7340-2